
FFT libraries on Cray XT:
CRay Adaptive FFT (CRAFFT)

Jonathan Bentz

Cray Inc.

Outline

Background

Current FFT libraries on XT

CRAFFT design
Example interfaces

Performance Results

Future plans

Questions?

May 05 Slide 2Cray Inc. Proprietary

Fourier Transform Background

Discrete Fourier Transform (DFT)
Transforms an array x(0:N-1) into X(0:N-1)

Calculation by the definition is a O(N2) algorithm

Fast Fourier Transform (FFT)
Algorithm to calculate the DFT using O(N log N)

Algorithm is dependent on N

Applications (among many)
Signal processing

Solving PDE

May 05 Slide 3Cray Inc. Proprietary

1,
2

exp
1

0

i
N

ijk
xX

N

j

kk

May 05 Cray Inc. Proprietary Slide 4

Current FFT libraries on XT

FFTW (MIT, Frigo & Johnson, fftw.org)
Serial performance is very competitive

SIMD code for x86

Sophisticated run-time tuning mechanisms

Extremely flexible interface

FFT for almost any data distribution you can imagine

Complicated and tedious interface

Substantive differences between versions 2 and 3

Interfaces are incompatible

Parallel transforms in version 2 only

Superior serial performance in version 3

ACML (AMD, amd.com)
Performance is not spectacular

Especially on non-powers of 2

FFT libraries common practice

Execution of FFT in application code generally has two steps
1. PLANNING stage

• Initialize the FFT library based on the FFT size

Some libraries pre-compute a table of trigonometric values

FFTW is able to try out various FFT of that size and choose the
fastest one

• Often this can take orders of magnitude longer than the actual
execution of the FFT

• An FFTW_PATIENT plan for size 512^3 FFT takes 2758 sec to
plan and 9.7 sec to execute!!!

2. EXECUTION stage

• Execute the FFT using the information from the Planning stage

May 05 Slide 5Cray Inc. Proprietary

Major problem with FFT libs

Which library to choose?
We want the best possible FFT performance

To date, we have seen excellent performance from FFTW

FFTW also has a rich set of options for different data distributions

Do NOT want to change application code frequently

How to use the complicated interfaces???
FFTW can be really difficult to use

E.g., 2d FFT with LDA > size, 14 arguments!!!

call dfftw_plan_many_dft(plan,rank,n,howmany, &
input,inembed, &

istride,idist, &
output,onembed, &

ostride,odist, &
expon,FFTW_flags)

May 05 Slide 6Cray Inc. Proprietary

CRAFFT library solves this problem

CRAFFT is designed with simple-to-use interfaces
Planning and execution stage can be combined into one subroutine
call

Underneath the interfaces, CRAFFT calls the appropriate FFT kernel

CRAFFT provides both offline and online tuning
Offline tuning

Which FFT kernel to use

Pre-computed PLANs for common-sized FFT

Online tuning is performed as necessary at runtime as well

At runtime, CRAFFT adaptively selects the best FFT kernel

to use based on both offline and online testing (e.g. ACML,

FFTW, Custom FFT)

May 05 Cray Inc. Proprietary Slide 7

User Interface Choices

Cray-style interface (mostly for legacy compatibility)
ZZFFT(…); 1d complex-to-complex double precision FFT

Simple interface
CRAFFT_z2z1d(size,array,isign)

Just the basics, size and array locations

All internals, including possible temporary memory allocation and
tuning are taken care of

The easiest choice for users

Advanced interface
CRAFFT_z2z1d(size,array,isign,workspace,PLANNING)

In addition to size and array, user also provides workspace and
planning parameters

In 2D and 3D, the leading dimension type args can be used

May 05 Cray Inc. Proprietary Slide 8

Interfaces (cont.)

All subroutine names have the form crafft_α2βθD
α, β = S,D,C or Z like netlib, i.e., D = double precision real, C =
single precision complex

θ = 1, 2 or 3, i.e., the dimension of the transform

E.g., crafft_d2z1d is a double real to double complex transform in 1d

Interface makes use of F90 modules to overload the names
Users must put “use crafft” in their fortran source code

1D complex to complex examples:

crafft_z2z1d(size,array,isign)

• in-place

crafft_z2z1d(size,input,output,isign)

• out-of-place

May 05 Slide 9Cray Inc. Proprietary

Simple 1d CRAFFT call resolves to…

May 05 Cray Inc. Proprietary Slide 10

dfftw_execute(plan)

dfftw_plan_dft_1d(plan,n,input,output,isign,FFTW_FLAG)

z2z1d_simple_internal(n,input,input,isign,1,1)

z2z1d_simple1_inplace(n,input,isign)

crafft_z2z1d(n,input,isign)

Advanced 2d CRAFFT call resolves to…

May 05 Cray Inc. Proprietary Slide 11

dfftw_execute(plan)

dfftw_plan_many_dft(plan,rank,n,howmany,input,inembed,istride,idist,output,onembed,ostride,odist,isign,FFTW_FLAG)

z2z2d_adv_internal(n1,n2,input,ld_in,output,ld_out,isign,1,1,work
)

z2z2d_adv1(n1,n2,input,ld_in,output,ld_out,isign,work)

crafft_z2z2d(n1,n2,input,ld_in,output,ld_out,isign,work)

CRAFFT user code calling sequence

May 05 Cray Inc. Proprietary Slide 12

call crafft_z2z1d(n,input,+1)

Execute the backward FFT

Do work

call crafft_z2z1d(n,input,-1)

Perform online tuning Execute the forward FFT

call crafft_init()

Initialize the library Setup the offline wisdom

CRAFFT 1.0alpha (current status)

Largely FFTW centric

Includes FFTW offline wisdom to minimize expensive online

planning

Allows simple interface into advanced FFTW functionality

Proposed release in summer 2008

PERFORMANCE???

May 05 Slide 13Cray Inc. Proprietary

Walltime vs. size, 1D C2C FFT planner

May 05 Slide 14Cray Inc. Proprietary

0.00001

0.0001

0.001

0.01

0.1

1

1 4 16 64 256 1024 4096 16384 65536 262144

T
im

e
 (

s
)

Size

C2C CRAFFT planner+exe

C2C FFTW planner

CRAFFT_PLANNER=0

FFTW_ESTIMATE

Walltime vs. size, 1D C2C FFT execute

May 05 Cray Inc. Proprietary Slide 15

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

1 4 16 64 256 1024 4096 16384 65536 262144

T
im

e
 (

s
)

Size

C2C CRAFFT exe

C2C FFTW exe

CRAFFT_PLANNER=0

FFTW_ESTIMATE

Walltime vs. size, 1D C2C FFT planner

May 05 Cray Inc. Proprietary Slide 16

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1 4 16 64 256 1024 4096 16384 65536 262144

T
im

e
 (

s
)

Size

C2C CRAFFT plan+exe

C2C FFTW plan

CRAFFT_PLANNER=2

FFTW_PATIENT

Walltime vs. size, 1D C2C FFT execute

May 05 Cray Inc. Proprietary Slide 17

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

1 4 16 64 256 1024 4096 16384 65536 262144

T
im

e
 (

s
)

Size

C2C CRAFFT exe

C2C FFTW exe

CRAFFT_PLANNER=2

FFTW_PATIENT

Summary

CRAFFT provides a simple interface into FFT for XT
Avoid those nasty 14 argument FFTW calls!

CRAFFT overhead is very minimal

CRAFFT performance is really excellent when using

common-sized FFT
CRAFFT avoids expensive planning stage

May 05 Cray Inc. Proprietary Slide 18

Future Work

Additional libraries “under-the-covers”
Complete libraries, e.g., SPIRAL (CMU, Franchetti et. al., spiral.net)

Targeted tuning of kernels for specific sizes

Parallel FFT
Again, provide a simple, intuitive interface and handle the details
transparently

Provide multiple data distributions

May 05 Cray Inc. Proprietary Slide 19

QUESTIONS???

Email: jnbntz@cray.com

May 05 Cray Inc. Proprietary Slide 20

